

LONGITUDINAL LOAD TYPES

- 1. Stringing Longitudinal Load
- 2. Service Longitudinal Load
- 3. Broken Conductor Longitudinal Load

Myth: all 3 longitudinal loads are covered by the load curve. FALSE

During Stringing...

Fact: The line post can be easily deflected with little force.

Fact: The longer the post, the higher the deflection.

Fact: The base connection to the tower is critical limitation.

SERVICE LONGITUDINAL LOAD

- Tangent = equal load on both sides of the insulator.
- Conductor in tension acts like a spring
- Conductor adds longitudinal stiffness to the post.

Fact: when a spring is pulled open, it generates a recoil force to close it back.

Myth: A tangent application should be able to withstand >2000 lbs. longitudinal loads.

Fact: Service Longitudinal loads should range from 100 to 1000 lbs.

BROKEN CONDUCTOR LONGITUDINAL LOAD

- · Onetime ultimate load event.
- Post absorbs a shock load (sudden load release of tension)

Fact: Primary objective is to Prevent cascading failure.

Fact: after withstanding a broken conductor event, the insulator should be replaced.

Fact: Line Post application – the base cannot break.

Fact: Braced Post application –
the base can break off.
The post absorbs the
shock load, the brace
holds the conductor.

TESTING FOR LONGITUDINAL CAPABILITY

Test & Validation Method Side Load / Deflection Slow Speed Pull Test	First Test of the Post Base is 1 st Limitation	STRINGING	
Test & Validation Method • Multi-axis testing (w/ Vertical & Transverse Loads) • Controlled Speed Pull Test	 Includes Conductor & Tension Loads = 0 to 1,500 lbs. 	SERVICE	LONGITUDINAL LOADS
Test & Validation Method Sudden Load Release Event (Shock Load Withstand) One Time Load Withstand	 Prevent Cascading Failure Hold the Conductor 	BROKEN CONDUCTOR	

Fact: Combined loads including compression and longitudinal loads with tension. loads will cause the post to buckle sooner than combined

Fact: The base connection to the tower is most critical during stringing and broken conductor events

BASE CONNECTIONS

Pinned Connection

- · Free to rotate in direction of longitudinal load
- Can restrain vertical and transverse loads
- · Offers no resistance to longitudinal load

Fixed Connection

- Limited / No Rotation (depending on base)
- Can restrain vertical and transverse loads (with longitudinal loads)
- Resists longitudinal loads

Fact: Swivel bases are used for braced post applications only. Pinned / Pinned

Fact: Gain bases are the most commonly used tower connection for line post and braced post applications.

GAIN BASE

- 12" Mount Hole Spacing
- 12° Upsweep Angle
- · Bendable Gain Anchor fitting
- Fixed Gain 5" Bolt Circle fitting
- Bolt grade is critical
- · H = mount offset from pole

- No minimum performance criteria for the bases (what should they provide?)
- No definition of material
- > Limited dimensional requirements

2.5" Line Post 47" length w/ Bendable Gain Base

2.5" Line Post 47" length w/ Fixed Gain Base

Fact: The Fixed Gain base provides more longitudinal resistance than a Bendable Gain base.

Fact: As the post length increase, it takes less load to deflect the line post.

BASE PERFORMANCE

- 5" Bolt Circle is the most reliable connection.
- Flat Bendable & Fixed Gain are comparable

Myth: All bases provide the same or comparable mechanical strength. FALSE

Fact: Each base type has different limitations.

Fact: The same base type supplied by 2 MFG can have different mechanical strengths and weakness.

All rights reserved @ 2019 MacLean Power Systems.

BENDABLE GAIN BASE LONGITUDINAL TESTING

REVIEW AND FINAL THOUGHTS

- Longitudinal loading adds complexity to an already complex process (Load Curves)
- Stringing / Service / Broken Conductor Each is different
- Conductor adds Longitudinal Stiffness to the post.
- The base connection is critical to mechanical performance.
- Not all bases perform the same [they vary by base type and by MFG]
- ANSI C29.17 needs more dimensional requirements and minimum performance criteria for all base connections (all sizes / applications).
- We need a Testing Standard as a means to validate load curves / mechanical strength ratings at 3rd Party Labs. [similar to electrical testing]

FOR ADDITIONAL INFORMATION
VISIT WWW.MACLEANPOWER.COM

ENIEDOSPIAL@MACLEANPOWER.COM