MPS Fused Cutouts
I. Cutout Design & Function
 1. Function
 a. Purpose
 b. System construction
 2. Terminology
 a. Common terms
 b. Cutout components
 3. History

II. Cutout Standards
 1. Current standards
 a. IEEE / ANSI
 b. CSA
 c. IEC
 2. Evolution of standards
 a. NEETRAC
 b. IEEE / ANSI
 c. Considerations
 3. Design tests
 a. Standard tests
 b. MPS tests
 c. NEETRAC proposed
III. Advantages of Polymer

1. Design
 a. Material
 b. Insulation
 c. Thermal cycling

2. Installation
 a. Durability
 b. Weight
 c. Handling

3. Maintenance & operation
 a. Core strength
 b. Safety
 c. Lifecycle & replacement

IV. MPS Cutouts

1. Design advantages
 a. Transmission experience
 b. Silicone vs. EPDM
 c. Core
 d. Shed pattern
 e. Fittings
 f. Hardware

2. Service advantages
 a. Domestic factory
 b. Storm capabilities
I. Cutout Design & Function
1. Function

a. Purpose
 • Over-current protection
 - System demand
 - Short circuits
 - Various fault types

b. System construction
 • Overhead distribution
 • All distribution kV classes
 • Commonly applied in front of transformers
 • Applied prior to beginning underground line

Video
http://www.youtube.com/watch?v=zAxGBHZtUM0&feature=youtu.be
2. Terminology

a. Common terms

• **Interrupt Rating**
 - Maximum short-circuit current the cutout device can interrupt, extinguish, and clear under standard test conditions

• **Basic Insulation Level (BIL)**
 - Measure of withstand for surge voltages such as lightning or system switching

• **Dry Arc**
 - Distance of the shortest path from line voltage to ground

• **Leakage**
 - Distance from line voltage to ground when the current path is along the insulation surface
2. Terminology cont.

b. Components

- Parallel-groove clamp
- Fuse support / body
- Center bracket
- Lower contacts
- Lower hinge
- Trunnion
- Flipper (under trunnion)
- Sleet shield
- Upper contact spring
- Upper contact
- Arcing horns / guide hooks
- Hook stick ring / eye
- Fuse holder / tube / door
- Fuse tube ferrules
2. Terminology cont.

• **Fuse holder**
 - Current interrupt rating specific
 - Filament wound tube to support fuse link
 - Reusable, but liner must be inspected after interruption
 - Arc energy used to convert synthetic liner to di-electric gas

• **Fuse link**
 - Selected by current rating and system coordination
 - Replaced after every over-current incident
 - Time / Current characteristics control melt speed
3. History

• General
 - Cutout patents date back to 1930
 - Up to mid 1990’s each manufacture had unique fuse holder dimensions

• Fuse tube
 - Bone fiber or fish paper
 - Problems with moisture absorption and swelling
 - Durability
 - S&C fuse tube design patented 1980 with synthetic lining
 - Current tubes are constructed from fiberglass

• Insulator
 - Porcelain devices
 - S&C silicone insulator patent filed 2002
 - MPS silicone cutouts 2010
II. Cutout Standards
1. Current Standards

a. IEEE / ANSI

- Institute of Electrical and Electronics Engineers Power & Energy Society
 - Shares developments in the electric power industry, creates standards for the development and construction of equipment and systems, and educates industry and the general public
 - Switchgear subcommittee is the controlling body for cutouts standards

- ANSI / IEEE C37.41-2008 Standard Design Tests
 - Power Frequency Dry Withstand
 - Power Frequency Wet Withstand
 - Impulse
 - Interrupting Test Series 1 – 5
 - Radio Influence
 - Temperature Rise
 - Manual Operation
 - Thermal Cycle
 - Bolt Torque

 - Tables specify test values for design tests listed above
 - Currently under revision with long term goal to roll C37.42 into C37.41

b. CSA – Canadian Standards Association

• **C310-09 Distribution Class Polymeric Cutouts**
 - References C37.41 & C37.42
 - Additional tests for polymer fuse supports, based on distribution insulators
 - Additional mechanical tests
 - Interchangeability clause
 - Bolt torque

• **Concerns with C310-09 Specifications**
 - Tracking & erosion test is at fixed 35V/mm leakage, not system voltage, penalizing high-leakage designs
 - Interrupt interchangeability of fuse tubes has no standard - annex A.5.4 suggests customers to inquire with manufactures

c. IEC

• **Used internationally in European, African, and many Latin American and Asian countries**
2. Evolution of Standards

a. NEETRAC
 • School of Electrical and Computer Engineering at Georgia Tech
 • Self-supporting, membership based testing & research center

b. ANSI / IEEE
 • C37.41 – porcelain cutout standard evolving to cover polymer cutouts
 - Currently under revision
 - Incorporating sections of C37.42
 - NEETRAC polymer working group has proposed recommendations to IEEE committee to include tracking & erosion, mechanical tests on fuse support and interruption at temperature extremes
 • C37.42 – phasing `out
 - Currently under revision
 - Many sections being moved to C37.41
 - Next revision most likely to be the last change

c. CSA
 • CSA 310-09
 - Test parameters should be reconsidered
 - MPS has not participated in this committee
3. Design Tests

a. Standards Tests
 • ANSI / IEEE C37.41-2008 Standard Design Tests
 - Power Frequency Dry Withstand
 Tests insulator design and construction by holding a specified voltage for a period of time

 - Power Frequency Wet Withstand
 Same as above but in a simulated high humidity or rainfall environment

 - Impulse (BIL):
 Tests insulation level to protect against surge voltages such as lightning or system switching

 - Radio Influence Voltage (RIV)
 Tests to ensure the design does not create electrical noise

 - Interrupting Test Series 1 – 5
 Tests the entire cutout system to interrupt different over-current conditions
3. Design Tests cont.

a. Standards Tests cont.

 - Temperature Rise
 Tests resistance factors (i.e. contact pressures, material selection and design)

 - Manual Operation
 Tests ability to function properly after 200 open and close operations

 - Thermal Cycle
 Tests design integrity during thermal expansion/contraction

 - Bolt Torque
 Tests hardware up to at 125% of nominal manufacturer-specified torque values
b. MPS Tests
 • 3 point bend – Test glass core rigidity
 • Water Diffusion
 – Tests fiberglass core integrity and silicone bond to core
 • Dye penetration
 – Tests fiberglass core integrity & end fitting seal
 • Torque
 – Tests crimp joint integrity and fiberglass core strength
 • Tensile test – Tests fiberglass core and end-fitting strength
 • Loadbuster – Tests mechanical operation using S&C Loadbuster device

c. NEETRAC proposed testing
 • Insulation Test (42 hr boiling water / steep front impulse / withstand)
 • Water Diffusion Tests (CSA 7.4)
 • Interruption Test Series 1 at +50 °C and -50 °C
 • Tracking & Erosion
 • Weathering - UV Aging
 • Long Term Deformation
III. Advantages of Polymer
1. Design Advantages

a. Material
 • Polymer types
 - PTFE – Polytetrafluoro ethylene
 - EPR – Ethylene propylene rubber
 - EPDM – Ethylene propylene diene methylene
 - SIR – Silicone rubber
 • Inherent resistance to pollution & are hydrophobic
 • Pliable material vs. brittle porcelain material
 • Weight differential (1:10)
 • Engineered material – easy to mfg.

b. Insulation
 • Increased leakage
 • Greater dry-arc distances lead to higher kV flashover levels
 • Better performance in polluted environments
2. Installation Advantages

c. Installation

• Durability & Handling
 - No possibility of chipping
 - Higher impact resistance
 - Cutout/arrester combo units save new install time

• Weight
 - Freight savings
 - Easier warehouse handling

• Safety
 - Ergonomics – low extended weight when installing
 - No potential sharp edges
3. Maintenance & Operations Advantages

a. Strength of fiberglass core over repeated interruptions and closures

b. Safety
 • No sharp edges due to damage (hail/ice)
 • No possibility of cracking or shrapnel dispersion under catastrophic events

c. Lifecycle & replacement
 • Longer lifecycles in polluted environments
 • No possibility of cracking due to thermal cycling
 • Reduced vandalism threat
 • Easier & cheaper disposal due to lighter weight
IV. MPS Polymer Cutouts
1. Design Advantages

a. MPS is an experienced leader in insulator design
 • 25+ Years and 29 million years of installed service life
 • Designs up to 500kV
 • All environments
 • This experience is designed into our cutouts

b. Advantages of Silicone vs. EPDM
 • Superior flashover performance
 • “Recovery” of hydrophobic properties
 • Superior UV & aging performance
 • Chemically inert – unaffected by pollutants

[Graph showing electric stress vs. ESDD for Silicone hydrophobic, EPDM, and glass]

[Image of an insulator cutout]
1. Design Advantages cont.

c. Core
- Boron-free/corrosion resistant E-glass core
- High-strength to withstand dynamic loads during interruption & fuse replacement
- 3-point bend sampling tests

d. Alternating Shed Pattern
- Meets IEC 60815-1, 3 for polymer selection & dimensioning in polluted conditions
 - s/p well above major competitors
 - Sufficient C (distance between sheds)
 - Lower l/d (leakage distance vs. clearance) than major competitors
 - Lower l/A (leakage over arching distance) value
- Superior pollution performance (including ice)
1. Design Advantages cont.

e. Fittings
 • Crimped on fittings
 - Prevents rotation and alignment issues
 - Provides mechanical barrier against moisture ingress
 • Over-molded rubber design provides additional barrier against moisture ingress

f. Hardware
 • Thicker sleet-shield prevents deformation and upper contact pressure issues
 • Thicker top contacts prevent deformation after interruption or mishandling
 • “Floating” top contact design provides sufficient pressure should a non-MPS fuse holder be installed
 • Dimpled top contact prevents over-closures
 • Gentle top contact angle allows for easier closing
 • Eyebolts & parallel groove clamp connector options
2. Service Advantages

a. Domestic Factory
 • Polymer cutout assembly in York SC
 • Domestic stocking of components
 • Short lead times & disaster recovery

b. Storm Capabilities
 • Cross-trained operators allow capacity-flexing in emergencies
 • Capabilities for 3 shifts 7 days a week
 • York location is out of typical disaster areas, yet in 1-2 days proximity to major shipping lanes & destinations
References